「HDOJ-P3887」Counting Offspring

翻译


题目描述

给你一棵树,和它的树根 $P$,并且节点从 $1\rightarrow n$ 编号,现在定义 $f(i)$ 为 $i$ 的子树中,节点编号小于 $i$ 的节点的个数。

输入格式

有多组数据 (不超过 10 组),对于每组数据:
第一行两个整数 $n,p$ $(n\le 10^5)$ 表示树有 $n$ 个节点,树根是 $p$。
接下来的 $n-1$ 行,每行两个整数,代表一条树边。
输入以两个零作为结束。

输出格式

对于每组测试数据,输出一行 $n$ 个整数 $f(1),f(2)……f(n)$,每两个数字之间以一个空格分格。

解题思路


显然,我们想要求 $f(i)$ 的话,只需要对其子树进行统计,而有不能够每一次都去遍历一遍,那样一定会超时。我们可以用 dfs 序先对整棵树进行处理,dfs 序可以将一个点的子树的编号放在一个区间内。然后用线段树进行求解 (如果暴力的在区间内统计的话,会 TLE,实锤),按编号从小到大将点的影响加到线段树中,边查询边更新。这样总时间复杂度是 $\text{O}(n\log n)$,显然可过。
要注意输出格式,每一行最后一个数字后面不能加空格。

附上代码


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 2e5+3;
inline int read() {
int x = 0, f = 1; char c = getchar();
while (c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while (c <= '9' && c >= '0') {x = x*10 + c-'0'; c = getchar();}
return x * f;
}
int n, rt, head[maxn], Index, L[maxn], R[maxn], cnt;
struct edge {
int nxt, to;
}ed[maxn];
inline void addedge(int x, int y) {
ed[++cnt].nxt = head[x], ed[cnt].to = y, head[x] = cnt;
ed[++cnt].nxt = head[y], ed[cnt].to = x, head[y] = cnt;
}
inline void dfs(int x, int fr) {
L[x] = ++ Index;
for(int i=head[x]; i; i=ed[i].nxt) {
if(ed[i].to == fr) continue;
dfs(ed[i].to, x);
}
R[x] = Index;
}
struct TREE {
int l, r, sum;
}tree[maxn << 2];
struct Segment_Tree {
#define Lson (k << 1)
#define Rson ((k << 1) + 1)
inline void build(int k, int ll, int rr) {
tree[k].l = ll, tree[k].r = rr;
tree[k].sum = 0;
if(tree[k].l == tree[k].r) return ;
int mid = (tree[k].l + tree[k].r) >> 1;
build(Lson, ll, mid);
build(Rson, mid+1, rr);
}
inline void update(int k, int pos, int num) {
if(tree[k].l == tree[k].r && tree[k].l == pos) {
tree[k].sum += num;
return ;
}
int mid = (tree[k].l + tree[k].r) >> 1;
if(pos <= mid) update(Lson, pos, num);
else update(Rson, pos, num);
tree[k].sum = tree[Lson].sum + tree[Rson].sum;
}
inline int query(int k, int l, int r) {
int res = 0;
if(l <= tree[k].l && r >= tree[k].r)
return tree[k].sum;
int mid = (tree[k].l + tree[k].r) >> 1;
if(l <= mid) res += query(Lson, l, r);
if(r > mid) res += query(Rson, l, r);
return res;
}
}T;
int main() {
while (scanf("%d%d", &n, &rt) == 2) {
if(n == 0 && rt == 0) return 0;
memset(head, 0, sizeof(head));
cnt = 0, Index = 0;
int x, y;
for(int i=1; i<n; i++) {
x = read(), y = read();
addedge(x, y);
}
dfs(rt, 0);
T.build(1, 1, n);
for(int i=1; i<=n; i++) {
printf("%d", T.query(1, L[i], R[i]));
T.update(1, L[i], 1);
if(i == n) printf("\n");
else printf(" ");
}
}
}